Capture of Gross Solids and Sediment by Pretreatment Practices for Bioretention

Final Report for the Project:
Field performance assessment of sediment and gross solids removal from surface inlet pretreatment practices for bioretention

by

Andrew J. Erickson and Matt A. Hernick

St. Anthony Falls Laboratory, University of Minnesota,
2 Third Avenue SE Minneapolis, MN 55455

Prepared for
University of Minnesota Water Resources Center,
Minnesota Stormwater Research Council
and
Anoka Conservation District

January 2019
Minneapolis, Minnesota
This project was supported by the University of Minnesota Water Resources Center and by the Minnesota Stormwater Research Council with financial contributions from

- Capitol Region Watershed District
- Mississippi Watershed Management Organization
- Ramsey-Washington Metro Watershed District
- South Washington Watershed District
- Valley Branch Watershed District, and
- City of Edina

For more information about the Center and the Council, visit https://www.wrc.umn.edu/projects/storm-waste-water

The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national origin, handicap, age or veteran status.
EXECUTIVE SUMMARY

The purpose of this project was to measure the performance of several pretreatment practices for bioretention, both proprietary and non-proprietary, commonly used in Minnesota using field-based performance testing. Five pretreatment practices for bioretention were assessed for capturing sediment and gross solids with field testing.

Most bioretention practices in Minnesota are designed to store the volume of runoff from a 1-inch rainfall event. Design volume tests involved measuring performance at the design storage volume (full storage volume before bypass) of the bioretention practice and were completed for four pretreatment practices. For this testing, the full design storage volume was added from a fire hydrant to the pretreatment and bioretention within 40 minutes (low intensity) or within 20 minutes (high intensity). The pretreatment and bioretention practices were not allowed to overflow or bypass during the design volume tests. Four pretreatment practices were tested, including:

- grass lined inlet (i.e., grassed buffer strip),
- Rain Guardian Bunker proprietary device,
- Rain Guardian Turret proprietary device,
- rock lined inlet (i.e., riprap).

A fifth pretreatment practice, an in-line shallow sump grit chamber, was tested for performance when the design storage volume was added in 30 minutes (low intensity) and 15 minutes (high intensity). The shallow sump grit chamber was also with bypass conditions, which involved adding approximately two and a half times the design volume to the pretreatment and bioretention practice, causing the system to overflow and bypass some water and solids to the downstream conveyance system. The goal of this testing was to determine the performance of an in-line shallow sump grit chamber under bypass conditions.

Prior to testing each pretreatment practice was thoroughly cleaned. Three sediment sizes including a coarse sediment ($D_{50} = 1.17\text{mm}$), a medium sediment ($D_{50} = 0.41\text{mm}$), and a fine sediment ($D_{50} = 0.12\text{mm}$) and three types of gross solids (plastic forks, synthetic leaves, and wood dowels) were added to water from a fire hydrant throughout the duration of each test. After testing was complete, sediment and gross solids were collected and then analyzed at St. Anthony Falls Laboratory to determine capture performance.

Summary of Results

All five pretreatment practices captured greater than 88% of the total sediment and greater than 65% of the fine sediment fraction ($D_{50} = 0.12\text{mm}$) in the low intensity tests, from an initially clean condition. During the high intensity tests, all practices captured greater than 70% of the total sediment mass and greater than 30% of the fine sediment fraction, similarly from an initially clean condition. Four of the five pretreatment practices captured 75% of the gross solids during low intensity tests and more than 55% of the gross solids during high intensity tests. The grass lined inlet captured the least gross solids; 20% during low intensity and 30% during high intensity. The performance for several sequential tests and maintenance needed for long-term operation of these pretreatment practices was not measured in this project.

Bypass tests were conducted to determine the performance of an in-line shallow sump grit chamber under bypass conditions. During these tests, overall sediment captured decreased from 95% during low intensity design volume tests down to 80% capture during high intensity bypass tests. Gross solids capture decreased from greater than 80% to below 40%. Thus, bypass at these
flow rates had minimal effect on the sediment, but measurable effect on the gross solids performance.

Though at least four of the five pretreatment practices performed similarly in terms of sediment and gross solids capture, only three out of the five appear to be simple to inspect and maintain. When maintenance is required, the grass lined inlet and rock lined inlet likely require the same amount of effort and cost to maintain them as would be needed to install them. In addition, the grass lined inlet and rock lined inlet would likely become filled with sediment within a few storm events. Of the pretreatment practices tested in this study, the grass lined inlet and rock lined inlet are among the most difficult and costly to maintain.

To maintain the Rain Guardian Bunker, Rain Guardian Turret, and shallow sump, one would need to remove the top grate and either shovel or hydro-vac the collected sediment and gross solids from within the collection chamber. The Bunker and Turret are both easily visible from the street so visual inspections of accumulated sediment depth are simple. The shallow sump is hidden underground, which makes assessing sediment accumulation depth more challenging. The Bunker, Turret, and shallow sump appear to have ample storage volume for collection and retaining sediment and gross solids. Of the pretreatment practices tested in this study, the Bunker and Turret are among the easiest to maintain, and the shallow sump is moderately easy to maintain.

Partnerships

This project was funded by the Minnesota Stormwater Research Council with additional funding and in-kind support provided by Anoka Conservation District. St. Anthony Falls Laboratory conducted the field testing and laboratory analysis; Anoka Conservation District provided staff and materials to install pretreatment practices to be consistent with industry standards.
ACKNOWLEDGEMENTS

This project was supported by the University of Minnesota Water Resources Center and by the Minnesota Stormwater Research Council with financial contributions from:

- Capitol Region Watershed District
- Mississippi Watershed Management Organization
- Ramsey-Washington Metro Watershed District
- South Washington Watershed District
- Valley Branch Watershed District, and
- City of Edina

For more information about the Center and the Council, visit https://www.wrc.umn.edu/projects/storm-waste-water

In addition, this project was supported by the Anoka Conservation District (ACD). The authors wish the thank the Water Resources Center and the Minnesota Stormwater Research Council and affiliated entities for provided funding to support this project. In addition, the authors wish to thank the ACD for provided funding and in-kind match (labor and materials) for this project.

Support and assistance from several organizations and individuals are listed below and is greatly appreciated. Support and assistance for the contracting process was provided by Jeff Peterson, John Bilotta, Ann Lewandowski, Cheryel Konate, Jenni Larson, Chris Lord, and Jared Wagner. In addition, Chris Lord, Jared Wagner, Mitch Haustein, and Jackson Miller (MN Conservation Corps Apprentice) provided in-kind support via labor and materials throughout testing conducted in Anoka. Support provided by St. Anthony Falls Laboratory (SAFL) staff and students include Rob Gabrielson, Peter Olson, Ben Erickson, Jim Tucker, Rikita Patel, Camila Merino-Franco, and Parker Brown.

The Cities of Anoka and Bloomington, MN provided staff, access to fire hydrants, and supplied water meters and hose for use in field testing. The authors wish to thank Marcus Mihelich from the City of Anoka, and Steve Gurney, Pat Conrad, and Ben Whitcomb from the City of Bloomington for their assistance. The City of Anoka donated 12,939 cubic feet of water and the City of Bloomington donated 1,560 cubic feet of water for field testing. In addition, owners of the property on which the rain gardens were located cooperated with field testing and supplied garden hose and donated water for field testing.